skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zanini, Giulia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brillouin spectrometers, used for characterizing material mechanical properties, traditionally employ etalons such as Fabry-Pérot interferometers and virtually imaged phased arrays (VIPA) that use spatial dispersion of the spectrum for measurement. Here, we introduce what we believe to be a novel approach to Brillouin spectroscopy using hot atomic vapors. Using laser induced circular dichroism of the rubidium D2 line in a ladder-type configuration, we developed a narrow-band monochromator for Brillouin analysis. Unlike etalon-based spectrometers, atomic line monochromators operate in free-space, facilitating Brillouin spectroscopy integration with microscopy instruments. We report the transmission and spectral resolution performances of the spectrometer and demonstrate Brillouin spectra measurements in liquids. 
    more » « less
  2. Spectral imaging techniques extract spectral information using dispersive elements in combination with optical microscopes. For rapid acquisition, multiplexing spectral information along one dimension of imaged pixels has been demonstrated in hyperspectral imaging, as well as in Raman and Brillouin imaging. Full-field spectroscopy, i.e., multiplexing where imaged pixels are collected in 2D simultaneously while spectral analysis is performed sequentially, can increase spectral imaging speed, but so far has been attained at low spectral resolutions. Here, we extend 2D multiplexing to high spectral resolutions of ∼80 MHz (∼0.0001 nm) using high-throughput spectral discrimination based on atomic transitions. 
    more » « less